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a b s t r a c t

In this paper, average-consensus control is considered for networks of continuous-time integrator agents
under fixed and directed topologies. The control input of each agent can only use its local state and the
states of its neighbors corrupted by white noises. To attenuate the measurement noises, time-varying
consensus gains are introduced in the consensus protocol. By combining the tools of algebraic graph
theory and stochastic analysis, the convergence of these kinds of protocols is analyzed. Firstly, for noise-
free cases, necessary and sufficient conditions are given on the network topology and consensus gains to
achieve average-consensus. Secondly, for the cases with measurement noises, necessary and sufficient
conditions are given on the consensus gains to achieve asymptotic unbiased mean square average-
consensus. It is shown that under the protocol designed, all agents’ states converge to a commonGaussian
random variable, whose mathematical expectation is just the average of the initial states.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, distributed coordination for multi-agent
systems has attracted more and more researchers in the control
community. For distributed coordination, it is a fundamental
requirement that the whole group can achieve consensus on the
shared data only through local communications. Consensus control
generally means to design a network protocol, such that as time
goes on, all agents asymptotically reach an agreement on their
states. For some consensus problems, the common value to which
the states converge is also required to be the average of the initial
states of the group. It is often called average-consensus (Olfati-
Saber, Fax, & Murray, 2007).
Average-consensus has wide applications in various areas such

as formation control (Sinha & Ghose, 2006), distributed filter-
ing (Olfati-Saber & Shamma, 2005) and distributed computa-
tion (Lynch, 1996). Olfati-Saber and Murray (2004) considered
the average-consensus control for first-order integrator networks
under fixed and switching topologies. They proved that under
the fixed topology, if the network is a strongly connected bal-
anced digraph, then the linear time-invariant protocol can en-
sure average-consensus. Kingston and Beard (2006) extended the
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results of Olfati-Saber and Murray (2004) to the discrete-time
models. In addition to the aboveworks, some researchers also con-
sidered the topologies of randomgraphs (Hatano &Mesbahi, 2005)
or control design based on individual performance optimization (Li
& Zhang, 2008).
Most researches in the above literature assume that each

agent measures its neighbors’ states accurately. However, real
networks are often in uncertain communication environments.
Recently, consensus problems with random measurement noises
have attracted the attention of some researchers (Carli, Fagnani,
Speranzon, & Zampieri, 2008; Huang & Manton, 2009; Ren, Beard,
& Kingston, 2005). However, for average-consensus problemswith
random measurement noises, there is still lack of good result
comparable with those obtained in the noise-free cases, even if the
network topology is time-invariant. Ren et al. (2005) introduced
time-varying consensus gains and designed consensus protocols
based on a Kalman filter structure. They proved that, when there
is no noise, the protocols designed can ensure consensus to be
achieved asymptotically. Huang and Manton (2009) introduced
decreasing consensus gains a(k) (where k is the discrete-time
instant) to attenuate the measurement noises. They proved that,
if the network topology is a strongly connected circulant graph,
and a(k) = O(1/kγ ), γ ∈ (0.5, 1], then the static mean square
error between the individual state and the average of the initial
states of all agents is in the same order as the variance of the
measurement noises; if the network topology is an undirected
graph and a(k) satisfies the condition on the step size in classic
stochastic approximation, then mean square weak consensus can
be achieved.

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
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In this paper, we consider the average-consensus control for
networks of continuous-time integrator agents under fixed and
directed topologies. The control input of each agent can only use its
local state and the states of its neighbors corrupted bywhite noises.
Inspired byHuang andManton (2009) andRen et al. (2005),we also
use a time-varying consensus gain a(t) in our network protocol to
attenuate the measurement noises.
Different from Huang and Manton (2009), here we consider

continuous-time models. Consensus control of continuous-time
first-order integrator networks has been widely studied for the
noise-free case (Moreau & Belgium, 2004; Olfati-Saber & Murray,
2004). Continuous-time models also have wide applications in
other fields of the research on cooperative control, such as
formation control (Sinha & Ghose, 2006), swarming (Gazi &
Passino, 2003) and flocking problems (Olfati-Saber, 2006). Since for
many scenarios the robot dynamics can bemodeled as continuous-
time first-order or second-order integrators under feedback
linearization, many cooperative control laws are designed based
on the continuous-time consensus strategy (Sinha & Ghose, 2006).
Continuous-time first-order integrator models are also adopted
in distributed estimation (Olfati-Saber & Shamma, 2005; Ren
et al., 2005) and synchronization of coupled oscillators (Preciado
& Verghese, 2005). Our methodology could be potentially applied
to designing and analyzing distributed estimation and control
strategies under uncertain environment.
Due to the measurement noises and the time-varying consen-

sus gains a(t), under the protocol designed, the closed-loop system
is a time-varying stochastic differential equation. The state matrix
of the equation is a time-varying Laplacian matrix of a digraph.
Different from the cases of undirected and circulant graphs, these
kinds of state matrices are neither symmetric nor diagonalizable,
which results in difficulties for convergence analysis. We combine
stochastic analysis and algebraic graph theory together, by intro-
ducing the concept and tools of symmetrized graph (Olfati-Saber
& Murray, 2004) in stochastic Lyapunov analysis, and dealing with
the Itô termby the stopping time truncationmethod. For the proto-
col designed, firstly, we prove that, a balanced digraph containing
a spanning tree (a strongly connected and balanced digraph) is the
weakest condition on the topology to ensure average-consensus.
Then, under these kinds of network topologies, we give a nec-
essary and sufficient condition on the consensus gains to ensure
asymptotic unbiased mean square average-consensus. This condi-
tion consists of twoparts, one,

∫
∞

0 a(t)dt = ∞, called convergence
condition, is to make all agents’ states reach an agreement with a
proper rate; and the other,

∫
∞

0 a
2(t)dt < ∞, called robustness

condition, is to make the static error of the closed-loop system fi-
nite regardless of measurement noises, that is, to make the con-
sensus protocol robust againstmeasurement noises.We prove that
under the protocol designed, the state of each agent converges in
mean square to a commonGaussian randomvariable,whosemath-
ematical expectation is just the average of the initial states. The
analytic expression of the variance is also given.
The remainder of this paper is organized as follows. In Section 2,

some concepts in graph theory are described, and the problem to
be investigated is formulated. In Section 3, for noise-free cases,
a necessary and sufficient condition is given on the network
topology and the consensus gains to achieve average-consensus.
For the cases with measurement noises, necessary and sufficient
conditions are given on the consensus gains to achieve asymptotic
unbiased mean square average-consensus. In Section 4, two
numerical examples are given to illustrate our results. In Section 5,
some concluding remarks and future research topics are discussed.
The following notations will be used throughout this paper: 1

denotes a column vector with all ones. Im denotes the m × m-
dimensional identity matrix. For a given set S, χS denotes its
indicator function; |S| denotes its number of elements. For a given

vector or matrix A, AT denotes its transpose, and ‖A‖ denotes its
Frobenius norm. For a given square matrix A, ρ(A) denotes its
spectral radius, and tr(A) denotes its trace. For a given random
variable X , E(X) denotes its mathematical expectation; Var(X)
denotes its variance. For any given real numbers a and b, a ∧ b
denotes min{a, b}. For a family of random variables (r.v.s) {ξλ, λ ∈
Λ}, σ(ξλ, λ ∈ Λ) denotes the σ -algebra σ({ξλ ∈ B}, B ∈ B, λ ∈
Λ), where B denotes the one-dimensional Borel sets. For a σ -
algebra F and a r.v. ξ , we say that ξ is adapted to F , if ξ is F
measurable.

2. Problem formulation

2.1. Concepts in graph theory

Let G = {V, E,A} be a weighted digraph, where V =

{1, 2, . . . ,N} is the set of nodes, node i represents the ith agent;
E is the set of edges, and an edge in G is denoted by an ordered pair
(j, i). (j, i) ∈ E if and only if the jth agent can send information to
the ith agent directly. In this case, j is called the parent of i, and i is
called the child of j. The neighborhood of the ith agent is denoted by
Ni = {j ∈ V | (j, i) ∈ E}, which is the set of all parents of i. Node i is
called a source, if it has no parent but only children. Node i is called
an isolated node, if it has neither parent nor child. Denote the sets
of all sources and isolated nodes in V by Vs

4
= {j ∈ V| |Nj| = 0}.

To avoid the trivial cases, |V − Vs| > 0 is always assumed in this
paper.

A = [aij] ∈ RN×N is called the weighted adjacency matrix of G.
For any i, j ∈ V , aij ≥ 0, and aij > 0⇔ j ∈ Ni. degin(i) =

∑N
j=1 aij

is called the in-degree of i; degout(i) =
∑N
j=1 aji is called the out-

degree of i; LG = D − A is called the Laplacian matrix of G,
where D = diag(degin(1), . . . , degin(N)). LG has at least one zero
eigenvalue, LG1 = 0 and all nonzero eigenvalues have nonnegative
real parts (Merris, 1994).

G is called a balanced digraph, if degin(i) = degout(i), i =
1, 2, . . . ,N . G is called an undirected graph, if A is a symmetric
matrix. It is easily shown that an undirected graph must be a bal-
anced digraph and G is a balanced digraph if and only if 1TLG = 0.
A sequence (i1, i2), (i2, i3), . . . , (ik−1, ik) of edges is called a

directed path from node i1 to node ik. G is called a strongly
connected digraph, if for any i, j ∈ V , there is a directed path from
i to j. A directed tree is a digraph, where every node except the
root has exactly one parent and the root is a source. A spanning
tree of G is a directed tree whose node set is V and whose edge
set is a subset of E . If G is a strongly connected digraph, then
it must contain a spanning tree. Generally speaking, containing
a spanning tree does not imply strong connectivity, however,
for a balanced digraph, containing a spanning tree implies being
strongly connected. Below is a fundamental property of Laplacian
matrices:

Lemma 2.1 (Godsil & Royle, 2001). If G = {V, E,A} is an undi-
rected graph, then LG is a symmetric matrix, and has N real
eigenvalues, in an ascending order:

0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λN(LG),

and

min
x6=0,1Tx=0

xTLGx
‖x‖2

= λ2(LG),

where λ2(LG) is called the algebraic connectivity of G. If G is strongly
connected, then λ2(LG) > 0.



Author's personal copy

T. Li, J.-F. Zhang / Automatica 45 (2009) 1929–1936 1931

2.2. Consensus protocols

In this paper, we consider the average-consensus control for a
network of continuous-time first-order integrator agents with the
dynamics

ẋi(t) = ui(t), i = 1, 2, . . . ,N, (1)

where xi(t) ∈ R is the state of the ith agent, and ui(t) ∈ R is
the control input. The initial state xi(0) is deterministic. Denote
X(t) = [x1(t), . . . , xN(t)]T.
The ith agent can receive information from its neighbors:

yji(t) = xj(t)+ σjinji(t), j ∈ Ni, (2)

where yji(t) denotes the measurement of the jth agent’s state
xj(t) by the ith agent. {nji(t), i, j = 1, 2, . . . ,N} are independent
standard white noises, where σji ≥ 0 is the noise intensity.
Therefore, the graph G shows the structure of the information flow
in the system (1), called the information flow graph or network
topology graph of the system (1). (G, X) is usually called a dynamic
network (Olfati-Saber & Murray, 2004).
We call the group of controls U = {ui, i = 1, 2 . . . ,N} a

measurement-based distributed protocol, if
ui(t) ∈ σ(xi(s), yji(s), j ∈ Ni, 0 ≤ s ≤ t), ∀t ≥ 0, i = 1, 2, . . . ,N.

The so-called average-consensus control means to design a
distributed protocol for the dynamic network (G, X), such that
the states of all the agents converge towards 1N

∑N
j=1 xj(0), when

t →∞, that is, to compute 1N
∑N
j=1 xj(0) in a distributed way.

Applying the distributed protocol U to the system (1)–(2),
generally speaking, will lead to a stochastic closed-loop system,
and xi(t), i = 1, 2, . . . ,N , are all stochastic processes. Below we
give the definition of average-consensus protocol in mean square
for stochastic systems.

Definition 2.1. A distributed protocol U is called an asymptotic
unbiased mean square average-consensus protocol if it makes the
system (1)–(2) have the following properties: for any given X(0) ∈
Rn, there is a random variable x∗, such that E(x∗) = 1

N

∑N
j=1 xj(0),

Var(x∗) <∞, and

lim
t→∞

E(xi(t)− x∗)2 = 0, i = 1, 2, . . . ,N.

Remark 1. Here the term ‘‘asymptotic unbiased’’ is borrowed
from mathematical statistics, since the average-consensus can be
viewed as a distributed estimation problem for the group decision
value 1N

∑N
j=1 xj(0). If U is an asymptotic unbiased mean square

average-consensus protocol, then xi(t) is the asymptotic unbiased
estimate for 1N

∑N
j=1 xj(0), that is,

lim
t→∞

E[xi(t)] =
1
N

N∑
j=1

xj(0), i = 1, 2, . . . ,N.

If there is nomeasurement noise, andU is an asymptotic unbiased
mean square average-consensus protocol, then Var(x∗) = 0, that
is, x∗ = 1

N

∑N
j=1 xj(0). In this case, Definition 2.1 is equivalent to the

definition of average-consensus protocol for deterministic systems
in Olfati-Saber and Murray (2004).
For the dynamic network (G, X), we propose the distributed

protocol as

ui(t) =

0, i ∈ Vs,

a(t)
∑
j∈Ni

aij(yji(t)− xi(t)), i ∈ V − Vs, ∀t ≥ 0, (3)

where a(·) : [0,∞) → (0,∞) is piecewise continuous, called
consensus-gain function.

Remark 2. The weighted digraph is a widely used model to
describe the communication network in cooperative control
systems (Ballal & Lewis, 2008; Olfati-Saber &Murray, 2004). There
are many ways to choose the weights aij. In Jadbabaie, Lin, and
Morse (2003), the nearest neighbor rule gives aij = 1

1+|Ni|
, j ∈ Ni,

i = 1, 2, . . . ,N . For undirected networks, there are two popular
rules (Boyd, Diaconis, & Xiao, 2004):

• Maximum-degree weights:

aij = aji =
1

max
1≤l≤N

|Nl|
, (i, j) ∈ E .

• Metropolis weights:

aij = aji =
1

1+max{|Ni|, |Nj|}
, (i, j) ∈ E .

These rules can ensure fast convergence to consensus. Boyd et al.
(2004) also considered how to choose weights to ensure fastest
consensus. In this paper, besides the convergence rate, the impact
of the measurement noises may also be considered for choosing
the weights. For example, if the noise intensity σji is large, then the
measurement yji of xj is untrustworthy. In this case, wemay choose
a smaller weight aij.
In this paper, we will prove that under mild conditions, the

control law (3) is an asymptotic unbiased mean square average-
consensus protocol.

3. Convergence analysis

Denote the ith row of the matrix A by αi, and 6i =

diag(σ1i, . . . , σNi), i = 1, 2, . . . ,N , where σji = 0, j 6∈ Ni. 6 =
diag(αT161, . . . , α

T
N6N) is an N × N

2-dimensional block diagonal
matrix. ni(t) = [n1i(t), . . . , nNi(t)]T, η(t) = [nT1(t), . . . , n

T
N(t)]

T.
Substituting the protocol (3) into the system (1) leads to
dX(t)
dt
= [−a(t)LGX(t)] + a(t)6η(t).

It is a system driven by an N2-dimensional standard white noise,
which can be written in the form of the Itô stochastic differential
equation

dX(t) = [−a(t)LGX(t)]dt + a(t)6dW (t), (4)

where W (t) = [W11(t), . . . ,WN1(t), . . . ,WNN(t)]T is an N2-
dimensional standard Brownian motion.
To get the main results, we need the following assumptions:

(A1) G is a balanced digraph.
(A2) G contains a spanning tree.
(A3) Convergence condition:

∫
∞

0 a(s)ds = ∞.
(A4) Robustness condition:

∫
∞

0 a
2(s)ds <∞.

Remark 3. It can be seen that if there are constants β1 ≤ 1,
β2 > −0.5, γ1 ≤ 1, γ2 > 0.5, C1 > 0, C2 > 0, such that

C1
tγ1 [log(t)]β1

≤ a(t) ≤ C2[log(t)]β2
tγ2 , t →∞, then (A3)–(A4) hold.

Firstly, we will show what kind of conditions on the network
topology is needed to ensure average-consensus under the
protocol (3) for the noise-free case. For simplicity of problem
formulation, we introduce the following assumption:

(A5) In the dynamic network (G, X), there is an edge (j, i) ∈ E such
that σji > 0.

The intuitive meaning of Assumption (A5) is that, there is at least
one noisy communication channel in the dynamic network. The
negative proposition of (A5) is given by
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(A5′) In the dynamic network (G, X), for any (j, i) ∈ E , we have
σji = 0.

When (A5′) holds, the dynamic network degenerates to the noise-
free case, and the protocol (3) can be written as

ui(t) =

0, i ∈ Vs,

a(t)
∑
j∈Ni

aij(xj(t)− xi(t)), i ∈ V − Vs. (5)

Denote J = 1
N 11

T, L̂G =
LG+LTG
2 , δ(t) = X(t) − JX(t), and

V (t) = δT(t)δ(t). δ(t) is called the consensus error, and V (t) =
1
N

∑
1≤i<j≤N(xi(t) − xj(t))

2 is the energy function of consensus
error (Olfati-Saber & Murray, 2004). Then, we have the following
theorem.

Theorem 3.1. Apply the protocol (3) to the system (1)–(2) and
suppose that Assumption (A5

′

) holds. Then,

lim
t→∞
‖X(t)− JX(0)‖ = 0, ∀X(0) ∈ RN , (6)

if and only if (A1)–(A3) hold.

Proof. Sufficiency. It can be seen that Assumption (A5′) implies
6 = 0, and from Assumption (A1), it is known that JLG = 0. This
together with (4) gives

dJX(t)
dt
= 0, (7)

dV (t)
dt
= −2a(t)δT(t)LGδ(t) = −2a(t)δT(t )̂LGδ(t). (8)

From (A1), L̂G is the Laplacian matrix of Ĝ, which is the
symmetrized graph of G (see Definition 2 and Theorem 7 of Olfati-
Saber and Murray (2004)). Noticing that Ĝ is strongly connected,
by Lemma 2.1, we have δT(t )̂LGδ(t) ≥ λ2(̂LG)V (t), and λ2(̂LG) > 0.
This together with (8) leads to

dV (t)
dt
≤ −2λ2(̂LG)a(t)V (t).

This togetherwith the comparison theorem (Michel &Miller, 1977)
gives

V (t) ≤ V (0) exp
{
−2λ2(̂LG)

∫ t

0
a(s)ds

}
. (9)

Noticing that λ2(̂LG) > 0, from (9) and Assumption (A3), we have

lim
t→∞
‖δ(t)‖ = 0. (10)

From (7), it can be seen that JX(t) ≡ JX(0), ∀X(0) ∈ Rn, which
together with (10) implies (6).
Necessity.
Step 1. We will prove the necessity of (A1). To this end, we need
only to prove that: if G is not a balanced digraph, then (6) does not
hold. Suppose thatG is not balanced. Since LG has a zero eigenvalue,
there is anN-dimensional vector α, such that αT1 = 1, and αTLG =
0. Since G is not balanced, α 6= 1

N 1. This together with (4) and
6 = 0 leads to dα

TX(t)
dt = 0. Therefore,

αTX(t) ≡ αTX(0), ∀X(0) ∈ Rn. (11)

If (6) was correct, then we would have

lim
t→∞

αTX(t) = αTJX(0) =
1
N
1TX(0), ∀X(0) ∈ Rn.

This together with (11) would give α = 1
N 1, which contradicts

α 6= 1
N 1. Hence, (6) does not hold.

Step 2. We will prove the necessity of (A2). To this end, we need
only to prove that: if G does not contain a spanning tree, then
(6) does not hold. Consider the case where G does not contain a
spanning tree. In this case, there are only three situations (Ren &
Beard, 2005):
(I) There is at least one isolated node i0 in G. Applying protocol

(5), we get the closed-loop system described by

dxio(t)
dt
= 0,

dX̃(t)
dt
= −a(t)L̃X̃(t),

where X̃(t) = [x1(t), . . . , xio−1(t), xio+1(t), . . . , xN(t)]
T, and L̃ is

the Laplacian matrix of the subgraph formed by deleting i0 from
G. Take xio(0) = 0, xj(0) = 1, ∀j 6= i0. Then, by xio(0) = 0 we
have xio(t) ≡ 0. From L̃1 = 0, it is known that X̃(t) ≡ 1 is
the equilibrium solution of dX̃(t)dt = −a(t)L̃X̃(t) with X̃(0) = 1.
Noticing that a(t) is piecewise continuous, from the uniqueness of
the solutions of linear time-varying differential equations, one can
get that xj(t) ≡ 1, j 6= i0. Thus, (6) does not hold.
(II) There is no isolated node but at least two sources i1, i2 in G.

Taking xi1(0) = 0, xi2(0) = 1, and applying protocol (5), similar to
the proof in (I), we have xi1(t) ≡ 0 6= 1 ≡ xi2(t). Thus, (6) does not
hold.
(III) There is no isolated node and at most one source in G, but

G can be divided into two separated subgraphs G1 = {V1, E1,A1}
and G2 = {V2, E2,A2}, satisfying V = V1 ∪ V2, V1 ∩ V2 = Φ ,
E = E1 ∪ E2 and E1 ∩ E2 = Φ . Without loss of generality, suppose
thatV1 = {1, 2, . . . ., |V1|},V2 = {|V1| + 1, . . . , |V1| + |V2|}, and
A = diag(A1,A2) is a block diagonal matrix. Applying protocol
(5), the closed-loop system is given by

dX1(t)
dt
= −a(t)L̃1X1(t),

dX2(t)
dt
= −a(t)L̃2X2(t),

where X1(t) and X2(t) are the states of agents in V1 and V2
respectively, L̃1 and L̃2 are the Laplacian matrices of G1 and G2
respectively. Take xi(0) = 0, ∀i ∈ V1, and xj(0) = 1, ∀j ∈ V2.
Then, similar to the proof in (I), by the uniqueness of the solutions
of linear time-varying differential equations, we have xi(t) ≡ 0 6=
1 ≡ xj(t), ∀i ∈ V1, ∀j ∈ V2. Thus, (6) does not hold.
Step 3. We prove the necessity of (A3). To do so, we need only
to prove that: if

∫
∞

0 a(t)dt < ∞, then (6) does not hold. Let
Ṽ (t) = (X(t)− JX(0))T(X(t)− JX(0)).
Noticing that L̂G is a real symmetric matrix, similar to (8), we

have

dṼ (t)
dt
= −2a(t)(X(t)− JX(0))T̂LG(X(t)− JX(0))

≥ −2ρ(̂LG)a(t)Ṽ (t).

By this and Gronwall inequality (Gronwall, 1919), we get

Ṽ (t) ≥ Ṽ (0) exp
{
−2ρ(̂LG)

∫ t

0
a(s)ds

}
,

which implies that for any δ(0) 6= 0,

lim inf
t→∞

Ṽ (t) ≥ Ṽ (0) exp
{
−2ρ(̂LG)

∫
∞

0
a(s)ds

}
> 0.

Thus, (6) does not hold. �
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Remark 4. From Theorem 3.1, it can be seen that for the fixed
topology case, when there is no measurement noise, Assumptions
(A1) and (A2) are the weakest conditions on the network topology
for the protocol (3) to achieve average-consensus. Containing a
spanning tree ensures that different agents may asymptotically
agree on their states; while the balance of the digraph is to make
the centroid of the states to be a constant, such that the final group
decision value is the average of the initial states.

From the proof of Theorem 3.1, it can be seen that Assumption
(A3) is to ensure that the consensus error converges to zero with a
certain rate. In fact, when a(t) ≡ 1, the protocol (5) degenerates to
the time-invariant protocol (A.1) inOlfati-Saber andMurray (2004)
where (A3) holds naturally, and the consensus error converges
to zero exponentially. Therefore, we call (A3) the convergence
condition on consensus gains.

Remark 5. Different from Olfati-Saber and Murray (2004), here
we use Assumption (A2) rather than the assumption ‘‘G is strongly
connected’’. At a first glance, a balanced digraph containing a
spanning tree implies strong connectivity and there is no need to
refer to the concept of spanning tree. However, since Theorem 3.1
is to give necessary and sufficient conditions for the protocol (3)
to ensure average-consensus, the conditions given ought to be as
weak as possible. Containing a spanning tree is weaker than being
strongly connected and is theweakest condition considered on the
network topology to ensure consensus. Moreover, by introducing
the concept of containing a spanning tree, the proof of the necessity
part of Theorem 3.1 is clear, where Steps 1, 2 and 3 are for the
necessity of (A1), (A2) and (A3), respectively.

Remark 6. Substituting the protocol (5) into the system (1),we get
the closed-loop system for the noise-free case:

Ẋ(t) = −LG(t)X(t), t ≥ 0, (12)

where G(t) = {V, E, a(t)A} is a digraph with the time-varying
weighted adjacencymatrix a(t)A. The system (12) can be regarded
as a special case of a kind of time-varying system described by

Ẋ(t) = −LG(t)X(t), t ≥ 0, (13)

where G(t) = {V, E(t),A(t)} is a digraph with time-varying
topologies.

The convergence properties of the system (13) and its discrete-
time version have been widely studied (Moreau, 2005; Moreau &
Belgium, 2004; Tsitsiklis, Bertsekas, & Athans, 1986). Moreau and
Belgium (2004) gave a sufficient condition to guarantee that all
the state components of the system (13) converge to a common
value as time goes on. From Theorem 3.1, it can be seen that, the
condition given by Moreau and Belgium (2004) is not necessary.
It is easy to verify that if (A1) is satisfied, and a(t) = 1

t+1 ,
then by Theorem 3.1, all the state components of (12) converge
to 1N

∑N
j=1 xj(0), but the condition given by Moreau and Belgium

(2004) is not satisfied (see Theorem 1 of Moreau and Belgium
(2004)).
Below we will prove that under Assumptions (A1)–(A4), the

control law (3) is an asymptotic unbiased mean square average-
consensus protocol, which needs the following lemma.

Lemma 3.1. Applying the protocol (3) to the system (1)–(2), if
Assumption (A1) holds, then

E
∫ t

t0
a(s)δT(s)(I − J)6dW (s) = 0, ∀t ≥ t0. (14)

Proof. By (4) and (A1), we have

dδ(t) = [−a(t)LGX(t)]dt + a(t)(I − J)6dW (t)
= −a(t)LGδ(t)dt + a(t)(I − J)6dW (t).

Furthermore, by (A1), Lemma 2.1 and the Itô formula, we have

dV (t) = [−2a(t)δT(t )̂LGδ(t)+ a2(t)C0]dt

+ 2a(t)δT(t)(I − J)6dW (t)
≤ [−2λ2(̂LG)a(t)V (t)+ a2(t)C0]dt

+ 2a(t)δT(t)(I − J)6dW (t), (15)

where

C0 = tr((I − J)266T). (16)

For any given t0 ≥ 0, T ≥ t0, let

τ
t0,T
K =

{inf{t ≥ t0 : ‖δ(t)‖ ≥ K},
if ‖δ(t)‖ ≥ K for some t ∈ [t0, T ];
T , otherwise.

Then, by (15) we have

E
[
V (t ∧ τ t0,TK )χ

{t≤τ
t0,T
K }

]
− E[V (t0)]

≤ −2λ2(̂LG)
∫ t

t0
a(s)EV

(
s ∧ τ t0,TK

)
χ
{s≤τ

t0,T
K }
ds

+C0

∫ t

t0
a2(s)ds

≤ C0

∫ T

0
a2(s)ds, ∀t ∈ [t0, T ].

This implies that there is a constant Ct0,T <∞ such that

E
[
V
(
t ∧ τ t0,TK

)
χ
{t≤τ

t0,T
K }

]
≤ Ct0,T , ∀t ∈ [t0, T ].

Noticing that limK→∞ t ∧ τ
t0,T
K = t a.s., ∀t ∈ [t0, T ], by Fatou

lemma (Chow & Teicher, 1997), we have

sup
t0≤t≤T

E(V (t)) ≤ Ct0,T .

Thus,

E
[∫ t

t0
a2(s)V (s)ds

]
≤ sup
t0≤s≤t

E(V (t))
∫ T

0
a2(s)ds <∞,

∀t ≥ t0 ≥ 0.

Furthermore, noticing that

E
[∫ t

t0
a2(s)‖δT(s)(I − J)6‖2ds

]
≤ C0E

[∫ t

t0
a2(s)V (s)ds

]
,

∀t ≥ t0 ≥ 0,

by the property of Itô integral (Friedman, 1975), we have (14). �

Theorem 3.2. Applying the protocol (3) to the system (1)–(2), if
Assumptions (A1)–(A4) hold, then

lim
t→∞

E[V (t)] = 0. (17)

Proof. By (14) and (15) we have

E[V (t)] − E[V (t0)] ≤ −2λ2(̂LG)
∫ t

t0
a(s)E[V (s)]ds

+ C0

∫ t

t0
a2(s)ds, ∀ t ≥ t0 ≥ 0. (18)
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Denote I1(t) =
∫ t
0 exp{−2λ2(̂LG)

∫ t
s a(u)du}a

2(s)ds and I2(t) =
V (0) exp{−2λ2(̂LG)

∫ t
0 a(s)ds}. Then, by (18) and the comparison

theorem (Michel & Miller, 1977) we have

E[V (t)] ≤ C0I1(t)+ I2(t). (19)

From (A3) and λ2(̂LG) > 0, one can get limt→∞ I2(t) = 0. Thus,
to prove (17), we need only to prove limt→∞ I1(t) = 0. In fact, for
any given ε > 0, by Assumption (A4), there is s0 > 0 such that∫
∞

s0
a2(s)ds < ε. Therefore,

I1(t) =
∫ s0

0
exp

{
−2λ2(̂LG)

∫ t

s
a(u)du

}
a2(s)ds

+

∫ t

s0
exp

{
−2λ2(̂LG)

∫ t

s
a(u)du

}
a2(s)ds

≤ exp
{
−2λ2(̂LG)

∫ t

s0
a(u)du

}∫ s0

0
a2(s)ds+

∫ t

s0
a2(s)ds

≤ exp
{
−2λ2(̂LG)

∫ t

s0
a(u)du

}∫
∞

0
a2(s)ds+

∫
∞

s0
a2(s)ds

≤ exp
{
−2λ2(̂LG)

∫ t

s0
a(u)du

}∫
∞

0
a2(s)ds

+ ε, ∀t ≥ s0. (20)

From (A3) and λ2(̂LG) > 0 it follows that

lim
t→∞

exp
{
−2λ2(̂LG)

∫ t

s0
a(u)du

}
= 0.

Thus, by the arbitrariness of ε and (20), we have limt→∞ I1(t) = 0.
Hence, (17) holds. �

Theorem 3.3. Applying the protocol (3) to the system (1)–(2), if
Assumptions (A1)– (A4) hold, then

lim
t→∞

max
1≤i≤N

E(xi(t)− x∗)2 = 0,

where x∗ is a Gaussian random variable whose mathematical ex-

pectation is 1N
∑N
j=1 xj(0), and variance is

∑N
j=1

∑
j∈Ni

σ 2ji a
2
ij

N2
∫
∞

0 a
2(s)ds,

that is, (3) is an asymptotic unbiased mean square average-consensus
protocol.

Proof. By (4) and (A1), we have

d

(
1
N

N∑
j=1

xj(t)

)
= a(t)

1
N
1T6dW (t),

or equivalently,

1
N

N∑
j=1

xj(t) =
1
N

N∑
j=1

xj(0)+
1T6
N

∫ t

0
a(s)dW (s). (21)

From (A4) and the definition of the Itô integral (Friedman, 1975),
we know that

∫
∞

0 a(s)dW (s) is well defined. Let

x∗ =
1
N

N∑
j=1

xj(0)+
1
N
1T6

∫
∞

0
a(s)dW (s).

Then, by (21) and the Itô isometry, we have

lim
t→∞

E

(
1
N

N∑
j=1

xj(t)− x∗
)2

= lim
t→∞

E
(
1
N
1T6

∫
∞

t
a(s)dW (s)

)2

=
tr(66T)
N2

∫
∞

t
a2(s)ds = o(1), t →∞. (22)

Notice that

E[x∗] =
1
N

N∑
j=1

xj(0),

Var(x∗) = E
(
1
N
1T6

∫
∞

0
a(s)dW (s)

)2

=

N∑
j=1

∑
j∈Ni
σ 2ji a

2
ij

N2

∫
∞

0
a2(s)ds.

Then, from (22) and Theorem 3.2, the conclusion of Theorem 3.3
holds. �

It is shown by Theorem 3.3 that, if the network topology is a
balanced digraph containing a spanning tree, then (A3)–(A4) are
sufficient conditions to achieve asymptotic unbiased mean square
average-consensus. From the following Theorem 3.4, it can be seen
that, when there exist measurement noises, (A3)–(A4) are also
necessary. To see this, we need the following lemma

Lemma 3.2. Applying the protocol (3) to the system (1)–(2), if
Assumption (A1) holds, then for the constant C0 given by (16) and
all t ≥ t0 ≥ 0,

E[V (t)] ≥ E[V (t0)] exp
{
−2λN (̂LG)

∫ t

t0
a(s)ds

}
+ C0

∫ t

t0
exp

{
−2λN (̂LG)

∫ t

s
a(u)du

}
a2(s)ds.

Proof. Noticing that δT(t )̂LGδ(t) ≤ λN (̂LG)V (t), by Lemma 3.1,
similar to (18), we have that for all t ≥ t0 ≥ 0,

E[V (t)] − E[V (t0)]

≥ −2λN (̂LG)
∫ t

t0
a(s)E[V (s)]ds+ C0

∫ t

t0
a2(s)ds.

This together with the comparison theorem gives the result. �

Theorem 3.4. Apply the protocol (3) to the system (1)–(2) and
suppose that Assumptions (A1), (A2) and (A5) hold. Then, (3) is an
asymptotic unbiased mean square average-consensus protocol if and
only if (A3)–(A4) hold.

Proof. From Theorem 3.3, the sufficiency is obvious. Below we
need only prove the necessity.
We use the reduction to absurdity. Firstly, we prove the

necessity of (A3). If (A3) was not true, then from Lemma 3.2 we
would have that for any δ(0) 6= 0,

lim inf
t→∞

E[V (t)] ≥ lim inf
t→∞

V (0) exp
{
−2λN (̂LG)

∫ t

0
a(s)ds

}
> 0.

This contradicts the fact that xi(t), i = 1, 2, . . . ,N converge to a
common randomvariable inmean square. Hence, (A3) is necessary.
Below we prove the necessity of (A4). If (A4) did not hold,

noticing that xi(t), i = 1, 2, . . . ,N , converge in mean square
to a common random variable with finite second-order moment,
then by (21) we would see that as t → ∞, 1N 1

T6
∫ t
0 a(s)dW (s)

converges in mean square to a random variable xw with finite
second-order moment. Thus, by Corollary 4.2.5 in Chow and
Teicher (1997), we would have

lim
t→∞

E
(
1
N
1T6

∫ t

0
a(s)dW (s)

)2
= E(xw)2 <∞. (23)
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Fig. 1. Curves of states of Example 1.

On the other hand, from (A5), it is known that tr(66T) > 0. Hence,
by the Itô isometry, we have

lim
t→∞

E
(
1
N
1T6

∫ t

0
a(s)dW (s)

)2
= lim
t→∞

tr(66T)
N2

∫ t

0
a2(s)ds = ∞.

This contradicts (23). Therefore, (A4) is necessary, too. �

Remark 7. Combining Theorems 3.3 and 3.4, one can see the
important role played by (A4). When there is no measurement
noise, to achieve average-consensus, it is only required that the
consensus gains satisfy the convergence condition (A3). However,
in the noisy environment, from (21) one can see that the state
average of the closed-loop system is not a constant any more,
and (A3) itself is no longer sufficient. (A4) ensures that as time
goes on, the state average of the closed-loop system converges
in mean square. Theorems 3.3 and 3.4 also tell us that the time-
invariant protocol (A.1) proposed by Olfati-Saber and Murray
(2004) is not robustwith respect toGaussian noises. The purpose of
the introduction of time-varying consensus gains and Assumption
(A4) is just to attenuate the measurement noises, such that the
consensus protocol is robust with respect to measurement noises.
We call (A4) the robustness condition on consensus gains.

4. Numerical examples

Example 1. In this example we investigate the necessity of (A4)
when there are measurement noises by a two-agent interacting
system with the topology graph G1 = {1, 2, {(1, 2), (2, 1)},A1 =
[aij]2×2}, where a11 = a22 = 0, a12 = a21 = 1. The intensity
of the measurement noises σ21 = σ12 = 1, and the initial states
of the agents are x1(0) = 1 and x2(0) = −1, respectively. The
consensus-gain function a(t) is taken as a(t) ≡ 1, ∀t ≥ 0. In
this case, Assumptions (A1), (A2) and (A3) hold, but (A4) does not
hold. Under the control of protocol (3), the states of the closed-
loop system are shown in Fig. 1. It can be seen that the closed-loop
system is divergent.

Example 2. Consider a dynamic network of three agents with
the topology graph G2 = {1, 2, 3, {(1, 2), (2, 3), (3, 1)},A2 =
[aij]3×3}, where a13 = a32 = a21 = 1, a11 = a12 = a22 =
a23 = a31 = a33 = 0. The intensity of the measurement noises
σ12 = σ23 = σ31 = 1. The initial states of agents are given
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Fig. 2. Curves of states of Example 2.

by x1(0) = −2, x2(0) = −4 and x3(0) = 6, respectively. The
consensus-gain function a(t) is taken as a(t) = log(t+2)

t+2 , t ≥ 0.
Under the control of the protocol (3), the states of the closed-
loop system are shown in Fig. 2. It can be seen that as time goes
on, the states of the group asymptotically achieve consensus, and
approach the average of the initial states of all agents.

5. Concluding remarks

In this paper, the average-consensus control has been consid-
ered for networks of first-order integrator agents under fixed and
directed topologies. The control input of each agent can only use
its local state and the states of its neighbors corrupted by white
noises. Though the network topology is time-invariant, due to the
measurement noises, the convergence of the closed-loop system
cannot be ensured by using only the time-invariant protocol pro-
posed by Olfati-Saber and Murray (2004). Thus, time-varying con-
sensus gains are used in the consensus protocol. The concept and
tools of symmetrized matrices are used in the stochastic Lyapunov
analysis. Firstly, it is proved that a balanced graph containing a
spanning tree is the weakest condition on the network topology
to ensure average-consensus for these kinds of protocols. Then, a
necessary and sufficient condition is given on the consensus gains
to ensure asymptotic unbiased mean square average-consensus. It
is proved that under the protocol designed, the state of each agent
converges inmean square to a common Gaussian random variable,
whosemathematical expectation of the random variable is just the
average of the initial states.
For future research, it is an issue worth investigating how

to choose consensus gains properly to ensure almost sure
consensus and how to characterize the class of control laws
that guarantee average-consensus under measurement noises. In
addition, consensus problems under measurement noises with
leaders are also valuable for some applied scenarios.
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